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Full-Wave Analysis of a Two Slot

Microstrip Filter Using a New Algorithm
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Abstract—An integral equation is formulated in the spectral

domain for a two slot microstrip filter using the exact Green’s
function for the grounded dielectric substrate. Using a moment

method (MM) procedure, the integral equation has been dis-

cretized. The elements of the impedance matrix and the excitation
vector are given by two dimensional Sommerfeld type integrals
in closed form. An efficient and accurate numerical integration
scheme for computation of the elements is presented. The S
parameters obtained from the MM procedure have been found

to be in excellent agreement with measurements.

I. INTRODUCTION

I N THE PRESENT communication we consider the mi-

crostrip filter problem shown in Fig. 1. An integral equation

for the filter problem is derived using the exact Green’s

function for the geometry. Hence, both free space radiation

and surface waves are included in the solution. Using basis

functions modeling the incident, reflected and transmitted

currents on the filter [1], the integral equation is solved

numerically for the scattering parameters using a Galerkin

type MM procedure.

The elements of the impedance matrix and source vector ob-

tained from the MM procedure are given by two dimensional

integrals over the spectral coordinates k~ and kv.

Instead of integrating these integrals in the polar coordinate

system [1], an efficient and accurate scheme is applied in

which the integrals are integrated in the cartesian kz and

/cy coordinates using a deformation technique in which the

integration contour follows a path parallel to the imaginary

axis in the complex plane for one of the integration variables

[2] while the other integration variable is integrated along the

real axis using the weighted average algorithm [3]. In this

communication no approximation for the Green’s function is

used nor are the integration limits truncated.

In order to test the integration algorithm, the microstrip

filter problem was chosen since the space radiation and surface

wave radiation at resonance were expected to be substantial,

hence the transfer function of the filter would be suited

for testing against precision measurements using a HP8510

network analyzer.
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Fig. 1. Geometry of microstrip filter.

II. THEORY

In Fig. 1, the outline of the microstrip filter is shown. The

filter is in the form of an infinite microstrip line in which two

narrow gaps are cut. The substrate has thickness d, relative

permittivity e, and is assumed to be infinitely wide in the ~

and y directions. The filter lines are assumed to be infinitely

thin and perfectly conducting. Since the width of the filter

lines are narrow in terms of wavelength, we consider only m

directed surface currents. [4]

Green’s Function for the Grounded Dielectric Slab:

Using the spectral domain Green’s function, we obtain the

x-directed electric field at (z, y, d) from an z-directed current

distribution [5], [6]:

Ezz(q y, d)

(1)

where

kz(kz, kg) = / / KJx, y, d)e-~k=’e-~k’ydzdy (2)
J .)-cc
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K~($, y,ci) is thex-directed electric
tion on the microstrip filter lines.

surface current distribu-

. . j(k~ – k~)kzl sin(k.ld)
----

mmlelm
.sin(kzld), ko =w@ (3)

Tm = q.kz~ cos(kzld) + jk,l sin(kzld) (4)

T. = k.1 cos(k,ld) + jk~z sin(k~ld) (5)

k:l = erlc; – A2 Im(kzl) <0 (6)

&2 = k; – A2 Im(kZ2) <0 (7)

Az=k:+kz
Y“ (8)

Infinite Microstrip Line

An accurate solution of the microstrip filter problem requires

that the effective propagation constant k. for the current

distribution on the half infinite microstrip lines is computed

accurately. The effective propagation constant is computed

from the corresponding infinite microstrip line problem where

we have assumed the traveling-wave form e‘~k’2 [1] for the

z-dependence of the x- directed current distribution.

Since the main computational effort is spent computing

the impedance matrix elements obtained from the Galerkin

procedure, a judicious choice of basis functions is important

to obtain a convergent solution using a minimal number of

basis functions. The ~-dependence of the current distribution is

expanded in a set of entire domain Maxwellian basis functions

(10) which are also used as test functions [7, p. 342], The

Maxwellian functions satisfy the proper edge condition for

the surface current and are even functions in the transverse

coordinate y, as required by the symmetry of the geometry.

The method of solution involves formulating an integral

equation for the ~-directed electric field on the microstrip line

which is discretized using the Galerkin’s method of moment

procedure. The linear system obtained is subsequently solved

for the unknown expansion coefficients:

K.(z, y) = Kz(fL)L(Y) (9a)

(9b)
q=l

K.(z) = e–~k” (9C)

where

In the spectral domain, the basis functions are given by

+Jo(k,; -( ’-l) fl)); q=l,2, . . . .

Because of the x-dependence of the x-directed current distri-

bution (1) is reduced to (12), [1]:

13Zz(x, y, d) = &
s

m Gzx(k., ky)~x(ky)e~~’ydky. (12)
—m

Applying Galerkin’s method of moments on (12) yields

where

Zpq = J-
r

Gxx(L) ~y)fyq(~y)f;p(~y)d~y.
27/’ (J

(14)

Since k, is found to be larger than the surface wave poles in

the Green’s function, all elements in (14) are pure imaginary

[1], [8]. Hence (13) can be converted to a real matrix equation.

For the proper value of k., the determinant of the Z matrix in

(13) is zero. Starting with an assumed value of k., the secant

root seeking method is used for obtaining the true value of k..

When k, is determined, the C. coefficients are obtained as an

eigenvector to the Z-matrix in (13) [7, p. 342].

The Cn coefficients given by the eigenvector (Cl = 1) are

subsequently used for the incident, reflected and transmitted

waves on the half infinite microstrip lines.

Microstrip Filter

Having determined the effective propagation constant and

the Cm coefficients for the y-dependence of the current distri-

bution on the infinite microstrip line, we define an incident, a

reflected and a transmitted electric current. Using R and T for

the reflection and transmission coefficients respectively, the

z- and y-dependence of the incident, reflected and transmitted

currents [1] may be written in the form (17):

Kim +Kref = ((l – f?)f.sl(~) -.7(1 + ~) f.2(z))f(v) (17)

where

fsl(~)= f.(k.%+ ;) , f.s2(~) = f.s(~e~)

{
fs(~)= ‘i:u -&-r;;eu<0}

and

K,, = ( - TfU1(~) – jTfU2(z)) f(y)

where

f.1(~) = L(k.(x - L - 2G) - ~)

;.fu2(z) = fu(h(z - L - 2G))

(18)

(19)

(20)

(21)

(22)

(23)

(11) CJ=l
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Fig. 2. Expansion modes on the mlcrostrip filter,

Whether M in (19) and (22) is an integer value or not is of no

consequence for the numerical convergence of the correspond-

ing integrals obtained later from the Galerkin procedure when

computed by the integration scheme described in this paper.

However, ill is chosen as an integer since this yields a simpler

expression in the spectral domain. Numerical tests indicate

that the solution to the filter problem is almost independent

of A/f when the traveling wave modes are longer than five

wavelengths (ill = 10). For the computations in the present

paper, we have used M = 15.
Subsectional piecewise sinusoidal (PWS) modes have been

used for modeling the x-dependence of the current in the

vicinity of the gaps as shown in Fig. 2. The PWS modes

are defined

fzn(x) =

sinke(hn – Iz – Xnl)
[$ - z.] < h.

sin k. hm (24)

where 2hn is the width and Xn is the position of the

centre of the nth PWS function. The y-dependence of the

Nz/, x-directed PWS modes are expanded into a sum of NY

Maxwellian mod-es (10).

Substituting the true current with an expansion using the

basis functions described, the x-directed E-field at the upper

surface of the dielectric layer may be written in the form of

an integral equation (25):

. #xe~kuyd&d~y. (25)

Equation (25) is tested with (Nm + 2)NY PWS test functions

(10), (24). Since the traveling wave modes are obtained

from the solution of the infinite microstrip line problem,

the boundary condition for the tangential electric field is

automatically satisfied away from the gaps. Hence, it is only

necessary to test (25) in the gap regions.

The PWS test functions are located as the PWS basis funct-

ions are, except for the two additional test functions necessary

to obtain the same number of equations as unknowns. The two

additional test PWS functions are located immediately after

the last PWS basis function at each side of the two gaps. The

y-dependence Km(y) of these two test functions are assumed

identical to the traveling wave modes.

The impedartce matrix elements can then be defined using

the following indices:

n Index of PWS basis functions z-dependent part

q Index of PWS basis functions g-dependent part

m Index of PWS test functions x-dependent part

p Index of PWS test functions y-dependent part

t] Additional test functions on the left microstrip line

t2 Additional test functions on the right microstrip linle.

The testing procedure results in a matrix equation for the

unknown coefficients R, T, K1l, . . . . K~q, . . . . KNZ N,.

A simple example with two PWS modes on the centre strip

(and none on each of the half infinite lines), each expanded

in two Maxwellian modes for the y-dependence, yields matrix

equation (31 ), which is shown at the bottom of the next page.

(26)

(27)

(28)

(30)
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III. COMPUTATION OF THE Z AND THE V ELEMENTS

The main computational effort when solving the filter prob-

lem is the numerical computation of the individual elements

in the impedance matrix Z and the excitation vector V. The

elements are given by two dimensional Sommerfeld type

integrals given in closed form in (26) to (30), which is shown at

the bottom of the previous page. The integrands contain poles

corresponding to the generation of surface waves. Further-

more, the integrands are rapidly oscillating as k: + k; ~ m,

especially as the distance between basis and test functions

increases.

Usually, the spectral domain integration intervals in (26) to

(30) are transformed into finite and semi-infinite intervals by

changing the cartesian integration variables (k., ky ) into the

polar integration variables (A, @) [3], [8], [9].

One difficulty when using the polar integration scheme is

to compute the # integration accurately since the oscillation

frequency of the integrand is directly proportional to the

integration variable A. Attempting to truncate the semi-infinite

integration interval for ~ in order to set an upper bound for the

oscillations in # reduces the obtainable numerical accuracy of

the integral which is slowly convergent.

In this work, the numerical computation of the integrals is

made in the cartesian coordinates (kc, ku ) without truncation

of the infi~qite intervals.

Since ~. and jb are real functions and GZZ is an even

function of k. and of /cy the integrals in (26) to (30) can

be written as in (32):

(33)

The singularities of the Green’s function are located in the

range k: < k: + k; < erk~ [11] and correspond to transverse

magnetic surface waves Tm (A) = O and/or transverse electric

surface waves T.(A) = O. In the (k., kg) plane. the poles are

located on concentric circles. Hence, when integrating along

a contour parallel to the kY axis, the position of singular

points (if any) depends on the value of k.. In order to

avoid the difficulty of k. (kV ) -dependent singular points when

Im(kx)

/ \

c;

,C;,
A Re(kx)

Fig. 3. Integration contour used in the complex kz and kv planes.

integrating parallel to the kg (kZ ) axis, the integration path has

been deformed into the complex kg (kz) plane in the range

from O to (1 + ~) k. using the Cauchy integration theorem

[12]. The deformed integration path used for both the k. and

the kg integration variables is shown in Fig. 3.

Alternative integration contours have been investigated.

Rexberg [9] uses the upper half of an ellipse for the integration

path in the A plane. In [2a], a triangle is used for the integration

contour in both the kZ and the ku planes.

The integration path cannot be arbitrarily deformed into the

first quadrant for the k. variable when using the approach

described in the present paper since the integration contour

chosen later for the kv variable introduces branch cuts in this

quadrant. Furthermore, care must be taken when choosing the

path for numerical reasons. If the path is too close to the

singular points on the real axis, the values of the integrand

become too large for accurate numerical computation. On the

other hand, if the integration path is too far from the real axis,

the integrand increases exponentially in amplitude.

It is necessary to integrate the three linear parts of which

the deformed contour is composed independently since the

path itself is not differentiable. In spite of this, we found from

numerical experiments that the integration contour in Fig. 3

was more efficient in terms of integration points for a given

accuracy than the elliptic path in the complex k. and /cv planes.

Furthermore, we found that the optimum values for Im(kZ )

and Im(kV ) to be about O.Iko, which is similar to the value

choose by Newman and Forrai [10] for the deformation into

the complex ~ plane.

Zllll Z1112 21211 21212 (–zl~.l – jz~l.z) (–ZJIUI – jz~~uz) -

Zllzl 21122 21221 21222 (–212.1 – jzlz,z) (–212.1 – jz~~uz)

22111 Z2112 22211 22212 (–22,1,1 – jzzl.z) (–z~lul – jzz~uz) .

22121 22122 22221 22222 (–222s1 – jzzz,z) (–222.1 – jzzzuz)
z,~~~ z,~~z 2,121 2,122 (–2,1.s1 - jzIs2) (–.Z1UI – ~ztld)

2,211 2’,112 2,121 2,122 (–2,2s1 – jzt2s2) (–2,2.1 - jz*2u2) -

K1l

Klz

KM

K22

R

T

—

–211.1 + jzll.z

–212.1 + jzlz.z

–221,1 + jzzl.z

–222.1 + jzzz,z

–z~l,l + jztl.z

–Ztz.l + jztz.z

(31)
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It is important to note that the integrand must be analytical

when the Cauchy integration theorem is used. Hence, the

complex conjugated terms in (32) and (33) must be computed

as if /cz and kv where pure real because the k: and k; terms

are not analytical.

The Icy integration of (32) in the interval from (~+ l)ko

to ka.vmp = 45/ W is made using the Gauss–Legendre

integration algorithm. For ky larger than kasV~P, the product

between the basis and test functions in (32) is written as a

sum of functions (34) each composed of an oscillating and

a nonoscillating part given in closed form using the Jacobi

asymptotic expansion [13] for the zero order Bessel functions.

For the Maxwellian basis and test functions used for the

transverse dependence of the microstrip line current, the right

hand side of (34) contains two terms. One term has twice

the oscillation frequency of the Bessel functions while the

other term becomes nonoscillating. The integration of the

nonoscillating part is made using the Gauss–Legendre inte-

gration algorithm after applying the variable transformation

(35):

1
v.— dkY = –~dv

kv
(35)

1“
Gzz(kz, fkv)A(&/)ci~Y

A

‘I’’AG.=(kz:)A(: )idv’
for Wi = O

(36)

Distribution of Integration Points: Integration of the oscil-

lating part is made using Mosig’s weighted average algorithm

[3]. We have used 25ku integration points for each of the

sections of the integration contour above the branch point

and surface wave poles. In the interval from (& + l)ko to

k .~ymP, 100kV integration points have been used. Twelve inte-

gration points have been used for the nonoscillating integral in

(36) while 24 point have been used with the weighted average

algorithm (4 half periods each determined using 6 integration

points) for the oscillating p~.

The (25 + 25 + 25 + 100 + 12 + 24) = 211 integration

points used for the kv integration determines S(kZ ) with 6

significant digits.

S(k$) in (33) is tabulated for all the values of km used later

with the numerical integration in the kc direction. The integral

(32) is calculated using an identical integration contour for the

/cv integration above the branch point and surface wave poles.

The kz integration from k. = (~ + l)krJ to infinity
is determined using deformation of the integration contour

parallel to the imaginary axis [12].

Yang [2a] has applied this technique for rooftop basis

functions and an asymptotic approximation for the Green’s

function.

In this work no approximations with respect to the Green’s

functions are used. Furthermore, our approach is general in the

sense that the impedance matrix elements can be computed

regardless of the basis and test functions chosen.

The weighted average algorithm is less efficient for the kr

integration when compared to the deformation technique since

the contribution from each of the oscillating terms in (34) must

be computed independently.

The combination of basis and test functions is rewritten

into a sum of amplitude functions multiplied by exponential

functions with pure imaginmy arguments:

f.(kz).fJ(~z)+.fl(~.).fb(~.)= ~Ai(k.)eJw’k’; w e .??.
i

(:37)

From (32) and (37) we obtain

(:38)

where

z, = r S(kz)Ai(kz)eJw’k” dkz. (39)
(/T+l)ko

It is important that all the integrands are analytical and that

the integration contours do not cross any branch cuts. These

conditions are met for the integrand in (39). In Fig. 4, it is

shown how the deformation and the transformation is made

for w~ > 0.

We have proved that the integration contour along C: does

not contribute to Z; (39). Hence the integrals along C: and

C; are identical.

z; =
/

S(kZ)A,(kZ)e~vtk’dkz. (40)
c:

We define

Fi(kz)= s(kz)AJkm). (41)

The path C’; is given by

kx=A+jt %=.j

t c [O,co] where A = (~+ l)ko. (42)

From (40), (41) and (42) we obtain

Jo

= je~Am’ r F,(A + jt)e-’’”dt w~ >0. (43)
o

Since the integrand in (43) is decreasing exponentially, the

variable transformation (44) yielding a finite integration inter-

val can be applied without introducing numerial difficulties.

t=–~logz;
dt 1——
z= gz;

g>o. (44)
9

Using (44) upon (43) we obtain

For w~ <0 a similar procedure is used. For w~ = Othe variable

transformation (35) is applied for the Isz variable.
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Im(ki/lco)

““’”~

Re(ki/ko)

Fig. 4. Deformation of integration contour.

Insummary, see(46), which isatthe bottom ofthis page. In

(44) we have introduced a constant g >0. The value of (46)

is independent of g. However, the location and the number

of integration points necessary for the numerical computation

of the integral in (46), given a certain accuracy, is dependent

upon the actual value of g. Hence, the optimum, in terms

of the computational effort, is to minimize the sum of the

number of integration points used with the selected values of

9.
In all the integrals for the filter, we only use GZZ from

the dyadic Green’s function, however the integration scheme

described in this paper can be applied for any of the remaining

elements in the dyadic Green’s function.

Since GX. is an even function of kZ1, one may ignore the

branch cut due to kzl =
~ ‘he branch cut

4due to /tzz = k; – k: – k; which applies for G=. is shown

in Fig. 5. From Fig. 5 we appreciate that either the kZ or the

ky integration must be performed along a contour parallel to

the real axis.

For the kz integration, (25+25+25+ 12+2. 50) = 187

integrations points are used. The first 75 points are used for

the deformation contours above the surface wave poles. The

1,2 integration points are used for the nonoscillating part in

(46). The remaining 2*5O points are used for the deformation

into the first and fourth quadrants of the complex plane.

The accuracy obtained for the elements of Z and V are 4

to 5 significant digits regardless of the distance between the

basis and test functions. The accuracy of the current vector

(31) is also 4 to 5 digit.

2.0

1.5

1.0 No branch cuts

0.5
Im(kx/ko)

0.0

-0.5

-1.0

-1.5

-2.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Re(kx/ko)

(a)

5.0

2.5 :

Im(ky/ko)
I

0.0

-2.5

-5.0
0.0 1.0 3.0 4.0

Re(l?y~o)

(b)

Fig. 5. Branch cuts. (a) In the complex kz. (b) In the complex kg plane.

In order to minimize the computational effort, the basis and

test functions are divided into a lcx-dependent part and a kY-

dependent part. ~ese parts are calculated once per kz (kg)

integration point. GaZ (kZ, /cv) is calculated once per (kZ, kg).

( /(
S A –j:logz, kv & A –j~logz #’i/g)-ldz&twc 1 -

)( )
for w~ >0

9 0

2;(/$,) = ps(:>ky)q:)$i

I

foru, =0 . (46)

/(
S A +j~logz,kv Ai A +j~logz z–(’’’9)91dzdz_j:eJ.4wL 1 -

)( )

for Wi <0
9 0 9 9

g>o



GOTHELF AND OSTERGAARD: FULL-WAVE ANALYSIS OF TWO SLOT MICROSTRIP FILTER 107

\.
p$D

Fig. 6. Current distribution at first resonance. Input parameters: Substrate:

RT/duroid 5870, d = 0.7874 mm, e, = 2.33 Dimension of the frltec

W’ = 2.30 mm, G = 0.3 mm, L = 10 mm. Frequency = 9.66 GHz.

Basis functions: (41, 41, 41)*3.

Fig. 7. Current distribution at second resonance. Input parameters are the

same as used in Fig. 6 except for the frequency. Frequency = 19.32 GHz.

IV. RESULTS

Using the described procedure for computation of the ele-

ments in (31), the current distribution on the filter has been

determined from solving the linear equations. In Fig. 5, 6 and

7, the current distribution at the first and second resonance

frequency are shown. The value of the current distributions

at the edges are not shown due to the edge singularity.

The number of basis functions used for modeling the filter

currents are written using the notation (z, y, z) * v. The $, y

and z denote the number of PWS basis functions used for

modeling the current on the input, centre and output microstrip

line respectively. w denotes the number of Maxwellian basis

function used for the y-dependence. Regardless of the number

of PWS basis functions, their base covers the area indicated

in Fig. 2.

In Figs. 6 and 7, a standing wave at the semi-infinite input

microstrip line and a transmitted wave at the semi-infinite

output microstrip line can be observed. The excited currents

on the centre microstrip line demonstrates the first and second

resonance. Since the x directed current is singular at the edges

parallel to the x axis (10), the current shown in Figs. 5, 6 and

7 does not include the current value at the edges.

L

$1
-5 ; >-

,,/;; ‘X?,*,

-lo : ,,;; “; “ ‘“

dB ~,/ /’,,’ ,/ ,,. / \ .
-15 : , ,.’ ,,/“,, .*’

:,.//,/ ,’ /, ,.’
:,/” ,,

/P ,.
I /1 I I N

-25FFEf?ik
‘j.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6

Freq/GHz

Fig. 8. Amplitude of the S11 and S2 ~ parameters for the microstrip filter.
Input parameters: Substrate: RT/duroid 5870, d = 0.7874 mm, e, = 2.33
Dimension of microstrip filtec W’ = 2.30 mm, G = 0.3 mm, L = 10rnm.

In Fig. 8, the amplitude of S11 arnd S21 are shown. Four

sets of curves corresponding to (9, 9, 9)*3, (27, 27, 2711*3,

(41, 41, 41)*3 and (71, 71, 71)*3 PWS basis functions are

shown. From Fig. 8 it is seen that the convergence of the S

parameters is dependent of the number of PWS basis functions

used for the computations.

This dependence is due to the slope of the current expansion

functions at the gaps being limited by the PWS functions used

for the expansion. Clearly, increasing the number of PWS
modes increases the possible slope of the current at the gaps,

resulting in a better approximation to the true current.

The computations are shown together with measurements

in Fig. 9. The IS1l I and IS21I parameters have been measured

using a HP8510 network analyzer from which the power lost

to surface waves, radiation and losses in the dielectric and

conductors are computed. We observe a 0.85% deviation of

the computed resonance frequency and a maximum deviation

of 0.6 dB of the IS11\ and ISM I parameters at resonance.

To obtain improved numerical results without increasing the

number of basis functions, it is necessary to use a new type

of basis function in proximity to the gaps which allows for

the true slope of the current at the gap edge. Investigations of

this type are underway.

V. CONCLUSION

A full-wave analysis has been presented for the problem of

microstrip gap discontinuities. The S11 and SM parameters of

the two gap microstrip filter have been computed numerically

and compared with measurements. The agreement is excellent.

Plots of the current distribution and the parameters have been

presented. The spectral integral has been computed using a

new integration algorithm which is both fast and accurate.

The method is efficient in terms of the number of integration

points needed for convergence. The basis and test functions are
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0, --------------
1 I

w“”
------,,-s.

:.<<

-5 ,.’ ‘“ ‘“
,0

,./’
~ “;’:.Fti I._/.,/

\v! Xl I I I
.A ., ..T. 1 I

\
... -..

~Loss%.
---

------- .- . . . . . .

. . .
\

-..

; ]-----calculated(7l,7l,7l)3 I I

9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6
FreqfGHz

(a)

— Measured
------ Calculated (71,71,71 ).3

(b)

Fig. 9. Measured andcomputed amplitude of the S1l and S21 parameters.
(a) Amplitude plot of the measured and computed S-parameters and power
loss. (b) Measured andcomputed S-parameters in Smith chafi. Input param-

eters: Substrate: RT/duroid 5870, d = 0,7874 mm, e. = 2.33 Dimension of
the fdtec W = 2.30 mm, G = 0,3 mm, L = 10 mm, Frequency sweep:

9.2 GHz to 10.6 GHz.

divided into a kZ and a kY-dependent part which are calculated

once per kZ (kU) value. The Green’s functions are calculated

once per (kZ, kg) value. Using this procedure, the S11 and S21

parameters of the two gap microstrip filter have been computed

using 641 basis functions.
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