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Full-Wave Analysis of a Two Slot
Microstrip Filter Using a New Algorithm
for Computation of the Spectral Integrals

Ulrich V. Gothelf, Student Member, IEEE, and Allan @stergaard, Member, IEEE

Abstract— An integral equation is formulated in the spectral
domain for a two slot microstrip filter using the exact Green’s
function for the grounded dielectric substrate. Using a moment
method (MM) procedure, the integral equation has been dis-
cretized. The elements of the impedance matrix and the excitation
vector are given by two dimensional Sommerfeld type integrals
in closed form. An efficient and accurate numerical integration
scheme for computation of the elements is presented. The S
parameters obtained from the MM procedure have been found
to be in excellent agreement with measurements.

I. INTRODUCTION

N THE PRESENT communication we consider the mi-

crostrip filter problem shown in Fig. 1. An integral equation
for the filter problem is derived using the exact Green’s
function for the geometry. Hence, both free space radiation
and surface waves are included in the solution. Using basis
functions modeling the incident, reflected and transmitted
currents on the filter [1], the integral equation is solved
numerically for the scattering parameters using a Galerkin
type MM procedure.

The elements of the impedance matrix and source vector ob-
tained from the MM procedure are given by two dimensional
integrals over the spectral coordinates k. and k.

Instead of integrating these integrals in the polar coordinate
system [1], an efficient and accurate scheme is applied in
which the integrals are integrated in the cartesian k, and
k, coordinates using a deformation technique in which the
integration contour follows a path parallel to the imaginary
axis in the complex plane for one of the integration variables
[2] while the other integration variable is integrated along the
real axis using the weighted average algorithm [3]. In this
communication no approximation for the Green’s function is
used nor are the integration limits truncated.

In order to test the integration algorithm, the microstrip
filter problem was chosen since the space radiation and surface
wave radiation at resonance were expected to be substantial,
hence the transfer function of the filter would be suited
for testing against precision measurements using a HP8510
network analyzer.
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Fig. 1.

Geometry of microstrip filter.

II. THEORY

In Fig. 1, the outline of the microstrip filter is shown. The
filter is in the form of an infinite microstrip line in which two
narrow gaps are cut. The substrate has thickness d, relative
permittivity €, and is assumed to be infinitely wide in the z
and y directions. The filter lines are assumed to be infinitely
thin and perfectly conducting. Since the width of the filter
lines are narrow in terms of wavelength, we consider only z-
directed surface currents. [4]

Green’s Function for the Grounded Dielectric Slab:

Using the spectral domain Green’s function, we obtain the
x-directed electric field at (z,y, d) from an z-directed current
distribution [5], [6]:

Emm(l"y,d)
1 o N »
= Zlﬁ//__Oo wa(kkay)Kx(kw,ky)ejkz ejkyydk}g;dky
1)
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K, (z,y,d) is the z-directed electric surface current distribu-
tion on the microstrip filter lines.

A Jn
G == 71

‘ (€rk3 — k2)k.o cos(k.1d) + j(kZ — k2)k,1 sin(k,1d)

T.1Tn

-sin(k,1d), ko = wy/pe 3)

Tm = epkza cos(kad) + jk.1 sin(k,1d) Y]

Te = ko1 c08(ka1d) + jkaosin(k.1d) 5)

k2 = k3 — X Im(k,1) <0 (6)

k2, = k3 =A% Im(ks) <0 @)

N =k + k. (®)

Infinite Microstrip Line

An accurate solution of the microstrip filter problem requires
that the effective propagation constant k. for the current
distribution on the half infinite microstrip lines is computed
accurately. The effective propagation constant is computed
from the corresponding infinite microstrip line problem where
we have assumed the traveling-wave form e 7%= [1] for the
z-dependence of the z- directed current distribution.

Since the main computational effort is spent computing
the impedance matrix elements obtained from the Galerkin
procedure, a judicious choice of basis functions is important
to obtain a convergent solution using a minimal number of
basis functions. The y-dependence of the current distribution is
expanded in a set of entire domain Maxwellian basis functions
(10) which are also used as test functions [7, p. 342]. The
Maxwellian functions satisfy the proper edge condition for
the surface current and are even functions in the transverse
coordinate y, as required by the symmetry of the geometry.

The method of solution involves formulating an integral
equation for the z-directed electric field on the microstrip line
which is discretized using the Galerkin’s method of moment
procedure. The linear system obtained is subsequently solved
for the unknown expansion coefficients:

Ky(z,y) = K (x)K(y) (9a)

Ny
Ko(y) =Y Cafye(y) (9b)

g=1
K (z) = e~ Ike (9¢c)

where
2

cos (y(q - 1)—)

fy‘l(y) - = 172) (10)

In the spectral domain, the basis functions are given by
5 wT w
Fualk) =7 (901 + 0= 1))

+J0(ky%—(q-l)7r)>; ¢=1,2,---

Because of the z-dependence of the x-directed current distri-
bution (1) is reduced to (12), [1]:

1 Rl .
Evo(z,y,d) = 47r—2/ Gm(ke»ky)Kx(k‘y)e]kyydky' 12)

Applying Galerkin’s method of moments on (12) yields

21 Ziz Zis Cy 0
Za1 Zyy Zaz| - |Ca| =1{0 (13)
Z31 Zzp Zsg Cs 0

where
1 L r %
Za = 53 / Guw (ke by) Fua(ky) Fip (b )by (14)

Since k. is found to be larger than the surface wave poles in
the Green’s function, all elements in (14) are pure imaginary
[1], [8]. Hence (13) can be converted to a real matrix equation.
For the proper value of k., the determinant of the Z matrix in
(13) is zero. Starting with an assumed value of k., the secant
root seeking method is used for obtaining the true value of k..
When k. is determined, the C,, coefficients are obtained as an
eigenvector to the Z-matrix in (13) [7, p. 342].

The C,, coefficients given by the eigenvector (C; = 1) are
subsequently used for the incident, reflected and transmitted
waves on the half infinite microstrip lines.

Microstrip Filter

Having determined the effective propagation constant and
the C,, coefficients for the y-dependence of the current distri-
bution on the infinite microstrip line, we define an incident, a
reflected and a transmitted electric current. Using R and T for
the reflection and transmission coefficients respectively, the
z- and y-dependence of the incident, reflected and transmitted
currents [1] may be written in the form (17):

Kine+Krep = (1= R) far(z) = j(1+ R) fea(2)) f(y) (A7)

where

fa@) = f(ka+2),  fale)=Lka)  a®)
sinu —-Mr<u<O0
fa(u) = { 0  otherwise } (19)
and
Ky = (= Tfu(z) = jT fur(2)) [ () (20)
where
fur(@) = fu (k‘e(w ~L-2G) - g)
;fu2(x) = fu (ke(a7 -L- 2G)) 2n
in O<u< Mr
Fulw) = { i 0 ! otheruwise } 22)
Ny
F) = Cofya(y),C1 = 1. 23)
g=1
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Fig. 2. Expansion modes on the microstrip filter.

Whether M in (19) and (22) is an integer value or not is of no
consequence for the numerical convergence of the correspond-
ing integrals obtained later from the Galerkin procedure when
computed by the integration scheme described in this paper.
However, M is chosen as an integer since this yields a simpler
expression in the spectral domain. Numerical tests indicate
that the solution to the filter problem is almost independent
of M when the traveling wave modes are longer than five
wavelengths (M = 10). For the computations in the present
paper, we have used M = 15.

Subsectional piecewise sinusoidal (PWS) modes have been
used for modeling the x-dependence of the current in the
vicinity of the gaps as shown in Fig. 2. The PWS modes
are defined

sinke(hn — |z — 2,])
sink.h,,

[z — 2n] < by

0 [T —zn] > hn

where 2h, is the width and z, is the position of the
centre of the nth PWS function. The y-dependence of the
N/, z-directed PWS modes are expanded into a sum of N,
Maxwellian modes (10).

Substituting the true current with an expansion using the
basis functions described, the x-directed E-field at the upper
surface of the dielectric layer may be written in the form of

an integral equation (25):

E:c(l'a Y, d) =
o0 . . . . Ny Nac - .
// sz Kznc+Kref +Ktr+ZZanfmnfyq
—ocC g=1ln=1
- et*eedbul gk, dk,. 25

Equation (25) is tested with (N, + 2)N,, PWS test functions
(10}, (24). Since the traveling wave modes are obtained
from the solution of the infinite microstrip line problem,
the boundary condition for the tangential electric field is
automatically satisfied away from the gaps. Hence, it is only
necessary to test (25) in the gap regions.

The PWS test functions are located as the PWS basis func-
tions are, except for the two additional test functions necessary
to obtain the same number of equations as unknowns. The two
additional test PWS functions are located immediately after
the last PWS basis function at each side of the two gaps. The
y-dependence K, (y) of these two test functions are assumed
identical to the traveling wave modes.

The impedance matrix elements can then be defined using
the following indices:

n Index of PWS basis functions z-dependent part

g Index of PWS basis functions y-dependent part

m Index of PWS test functions z-dependent part

p Index of PWS test functions y-dependent part

t1 Additional test functions on the left microstrip line

t2 Additional test functions on the right microstrip line.

The testing procedure results in a matrix equation for the
unknown coefficients R, T, K11,- -+
A simple example with two PWS modes on the centre strip
(and none on each of the half infinite lines), each expanded
in two Maxwellian modes for the y-dependence, yields matrix
equation (31), which is shown at the bottom of the next page.
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II. COMPUTATION OF THE Z AND THE V ELEMENTS

The main computational effort when solving the filter prob-
lem is the numerical computation of the individual elements
in the impedance matrix Z and the excitation vector V. The
elements are given by two dimensional Sommerfeld type
integrals given in closed form in (26) to (30), which is shown at
the bottom of the previous page. The integrands contain poles
corresponding to the generation of surface waves. Further-
more, the integrands are rapidly oscillating as k2 + kz — 00,
especially as the distance between basis and test functions
increases.

Usually, the spectral domain integration intervals in (26) to
(30) are transformed into finite and semi-infinite intervals by
changing the cartesian integration variables (k, k) info the
polar integration variables (A, ¢) [3], [8], [9].

One difficulty when using the polar integration scheme is
to compute the ¢ integration accurately since the oscillation
frequency of the integrand is directly proportional to the
integration variable A. Attempting to truncate the semi-infinite
integration interval for A in order to set an upper bound for the
oscillations in ¢ reduces the obtainable numerical accuracy of
the integral which is slowly convergent.

In this work, the numerical computation of the integrals is
made in the cartesian coordinates (k, k,) without truncation
of the inﬁNnjte intervals. )

Since f, and fb are real functions and G, is an even
function of k, and of k, the integrals in (26) to (30) can
be written as in (32):

7— / " Sk k) Fr (ky )k,

_ / S (k) T (by) + F2 (k) Folky)) by 32)
where

500) = [ " G (b by o) 2 (o)

= /O " Gl k) (FaChe) i (k) + F k) () s

(33)

The singularities of the Green’s function are located in the
range k§ < k2 + k2 < e.k§ [11] and correspond to transverse
magnetic surface waves Tr,(\) = 0 and/or transverse electric
surface waves T.(\) = 0. In the (k,, k) plane. the poles are
located on concentric circles. Hence, when integrating along
a contour parallel to the k, axis, the position of singular
points (if any) depends on the value of k,. In order to
avoid the difficulty of k. (k,)-dependent singular points when
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Fig. 3. Integration contour used in the complex k. and k, planes.

integrating parallel to the &, (k) axis, the integration path has
been deformed into the complex ky(k,) plane in the range
from O to (1 4 /€, )ko using the Cauchy integration theorem
[12]. The deformed integration path used for both the £, and
the k, integration variables is shown in Fig. 3.

Alternative integration contours have been investigated.
Rexberg [9] uses the upper half of an ellipse for the integration
path in the A plane. In [2a], a triangle is used for the integration
contour in both the %k, and the %, planes.

The integration path cannot be arbitrarily deformed into the
first quadrant for the k, variable when using the approach
described in the present paper since the integration contour
chosen later for the k, variable introduces branch cuts in this
quadrant. Furthermore, care must be taken when choosing the
path for numerical reasons. If the path is too close to the
singular points on the real axis, the values of the integrand
become too large for accurate numerical computation. On the
other hand, if the integration path is too far from the real axis,
the integrand increases exponentially in amplitude.

It is necessary to integrate the three linear parts of which
the deformed contour is composed independently since the
path itself is not differentiable. In spite of this, we found from
numerical experiments that the integration contour in Fig. 3
was more efficient in terms of integration points for a given
accuracy than the elliptic path in the complex £, and k, planes.
Furthermore, we found that the optimum values for Im(k,)
and Im(k,) to be about 0.1ko, which is similar to the value
choose by Newman and Forrai [10] for the deformation into
the complex A plane.
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Zu Zeie Zu2 Zuoe (—Zuis1 — JZus2)
Zit Zaiz Znor Zuze  (—Ziast — jZ2s2)
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(_
(_

Zy1ui — 7 Z11u2) Kn —Z11s1 + § 2112

Z12u1 — JZ12u2) Ko —Z1251 + § 1252

Zotu1 = §Z21u2) Kor | | =Z2151 + 722152 31
Zaou1 — 3 Z22u2) Ko | | —Z2261 + 5 Z22s2 |

Zt1ul — §Z41u2) R ~Z1s1 + JZr1s2

Zs2ul — J Zr2u2) T ~Zas1 + J 4122
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1t is important to note that the integrand must be analytical
when the Cauchy integration theorem is used. Hence, the
complex conjugated terms in (32) and (33) must be computed
as if k. and k, where pure real because the k; and kj terms
are not analytical.

The &, integration of (32) in the interval from (/€. + 1)ko
0 Kasymp = 45/W is made using the Gauss-Legendre
integration algorithm. For ky larger than kqsymp, the product
between the basis and test functions in (32) is written as a
sum of functions (34) each composed of an oscillating and
a nonoscillating part given in closed form using the Jacobi
asymptotic expansion [13] for the zero order Bessel functions.

Falky) fy (y) + Fi (y) fo(ky) = Y Ailky) cos(wiky). (34)

For the Maxwellian basis and test functions used for the
transverse dependence of the microstrip line current, the right
hand side of (34) contains two terms. One term has twice
the oscillation frequency of the Bessel functions while the
other term becomes nonoscillating. The integration of the
nonoscillating part is made using the Gauss—Legendre inte-
gration algorithm after applying the variable transformation
(35):

1 1
v = k—y dky = —ﬁdv (35)
/ Groo(ko, ky)Ai(ky)dE,
A
1/A B
= / Gy (km, l) A, <1> %dv; for w; =0
0 v v/)wv
(36)

Distribution of Integration Points: Integration of the oscil-
lating part is made using Mosig’s weighted average algorithm
[3]. We have used 25k, integration points for each of the
sections of the integration contour above the branch point
and surface wave poles. In the interval from (/€. + 1)ko to
Kasymp, 100k, integration points have been used. Twelve inte-
gration points have been used for the nonoscillating integral in
(36) while 24 point have been used with the weighted average
algorithm (4 half periods each determined using 6 integration
points) for the oscillating part.

The (25 + 25 + 25 + 100 + 12 + 24) = 211 integration
points used for the k, integration determines S(k.) with 6
significant digits.

S(k) in (33) is tabulated for all the values of k. used later
with the numerical integration in the k,, direction. The integral
(32) is calculated using an identical integration contour for the
k, integration above the branch point and surface wave poles.

The k, integration from k, = (/€ + 1)ko to infinity
is determined using deformation of the integration contour
parallel to the imaginary axis [12].

Yang [2a] has applied this technique for rooftop basis
functions and an asymptotic approximation for the Green’s
function.

In this work no approximations with respect to the Green’s
functions are used. Furthermore, our approach is general in the
sense that the impedance matrix elements can be computed
regardless of the basis and test functions chosen.

The weighted average algorithm is less efficient for the £,
integration when compared to the deformation technique since
the contribution from each of the oscillating terms in (34) must
be computed independently.

The combination of basis and test functions is rewritten
into a sum of amplitude functions multiplied by exponential
functions with pure imaginary arguments:

Falk)f§ (ko) + Jo (ko) folka) = D Ai(ks)e? 5 w; € R.

37
From (32) and (37) we obtain

(\/a-l-l)ko . - - - -
7= / S(ha) (Fulke) Fi (ko) + £ (ko) folk)) e

‘|‘ZZ1'

(38)

where

Z, = / S(ky)Ai(ky)e?™ = dk,. (39)
(VeEr+1)ko

It is important that all the integrands are analytical and that
the integration contours do not cross any branch cuts. These
conditions are met for the integrand in (39). In Fig. 4, it is
shown how the deformation and the transformation is made
for w; > 0.

We have proved that the integration contour along C does
not contribute to Z; (39). Hence the integrals along Cf and
Cy are identical.

Z; = / S(ka) Au(ks)e?*= dky. (40)
cf
We define
Fy(ky) = S(ks)Ai(ka). 41
The path Cj is given by
) dk, .
t €[0,00] where A = (\/e, + 1)ko. (42)

From (40), (41) and (42) we obtain
7, = / F (A + jt)e?(Ataten gy o
0

= jelAw / F,(A+ jt)e = dt w; > 0. (43)
0

Since the integrand in (43) is decreasing exponentially, the
variable transformation (44) yielding a finite integration inter-
val can be applied without introducing numerial difficulties.

dt 1

— = > 0.
dz gz g

t= —llogz; 44)
g

Using (44) upon (43) we obtain

1
, - 1
Z; = jetiw / F; (A e logz) 2 /971, w; > 0.
g
" 45)
For w; < 0 a similar procedure is used. For w; = 0 the variable
transformation (35) is applied for the &, variable.
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Fig. 4. Deformation of integration contour.

In summary, see (46), which is at the bottom of this page. In
(44) we have introduced a constant g > 0. The value of (46)
is independent of g. However, the location and the number
of integration points necessary for the numerical computation
of the integral in (46), given a certain accuracy, is dependent
upon the actual value of g. Hence. the optimum, in terms
of the computational effort, is to minimize the sum of the
number of integration points used with the selected values of
g-

In all the integrals for the filter, we only use éw from
the dyadic Green’s function, however the integration scheme
described in this paper can be applied for any of the remaining
elements in the dyadic Green’s function.

Since G, is an even function of k.1, one may ignore the

branch cut due to k.1 = 4/e,k§ — k2 — k2. The branch cut

due to k.o =
in Fig. 5. From Fig. 5 we appreciate that either the &, or the
k, integration must be performed along a contour parallel to
the real axis.

For the k, integration, (25 + 25 + 25+ 12 + 2- 50) = 187
integrations points are used. The first 75 points are used for
the deformation contours above the surface wave poles. The
12 integration points are used for the nonoscillating part in
(46). The remaining 2*50 points are used for the deformation
into the first and fourth quadrants of the complex plane.

The accuracy obtained for the elements of Z and V are 4
to 5 significant digits regardless of the distance between the
basis and test functions. The accuracy of the current vector
(31) is also 4 to 5 digit.

k§ — k2 — k2 which applies for Gy is shown

2.0

LARSaEN)

15

No branch cuts

TITTTTY

1.0

AAZRAARRALE)

0.5
Im(kx/ko)E
0.0E

0.5

-1.0

5.0

25¢L

Im(ky/ko)}
0.0¢L

No branch cuts

1.0 2.0
Re(ky/ko)
®
Fig. 5. Branch cuts. (a) In the complex k.. (b) In the complex %, plane.

In order to minimize the computational effort, the basis and
test functions are divided into a k,-dependent part and a k,-
dependent part. These parts are calculated once per k,(k,)
integration point. G, (ks, k) is calculated once per (k, ky).

g

g>0

v/ v

A, <A +j$ logz)z_(“"/g)"ldz forw; <0

1 L. 1 - 1
j—eJA%/ S(A—j—logz,ky)/h(A—j—logz)z(“"/g)_ldz forw; >0
0 1/£~ . g
fa(m)
0 v

Uoaw s 1
—j—eldw / S<A+j—logz,ky)
g 0 g

(46)

forw, =0
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Fig. 6. Current distribution at first resonance. Input parameters: Substrate:
RT/duroid 5870, d = 0.7874 mm, ¢, = 2.33 Dimension of the filter:
W = 2.30 mm, G = 0.3 mm, L = 10 mm. Frequency = 9.66 GHz.
Basis functions: (41, 41, 41)*3.

Fig. 7. Current distribution at second resonance. Input parameters are the
same as used in Fig. 6 except for the frequency. Frequency = 19.32 GHz.

IV. RESULTS

Using the described procedure for computation of the ele-
ments in (31), the current distribution on the filter has been
determined from solving the linear equations. In Fig. 5, 6 and
7, the current distribution at the first and second resonance
frequency are shown. The value of the current distributions
at the edges are not shown due to the edge singularity.
The number of basis functions used for modeling the filter
currents are written using the notation (z,y, z)*v. The z,y
and z denote the number of PWS basis functions used for
modeling the current on the input, centre and output microstrip
line respectively. v denotes the number of Maxwellian basis
function used for the y-dependence. Regardless of the number
of PWS basis functions, their base covers the area indicated
in Fig. 2.

In Figs. 6 and 7, a standing wave at the semi-infinite input
microstrip line and a transmitted wave at the semi-infinite
output microstrip line can be observed. The excited currents
on the centre microstrip line demonstrates the first and second
resonance. Since the z directed current is singular at the edges
parallel to the x axis (10), the current shown in Figs. 5, 6 and
7 does not include the current value at the edges.
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Fig. 8. Amplitude of the S1; and So; parameters for the microstrip filter.
Input parameters: Substrate: RT/duroid 5870, d = 0.7874 mm, ¢, = 2.33
Dimension of microstrip filter: W' = 2.30 mm, G = 0.3 mm, L = 10mm.

In Fig. 8, the amplitude of Si; and Sp; are shown. Four
sets of curves corresponding to (9, 9, 9*3, (27, 27, 27)*3,
(41, 41, 41)*3 and (71, 71, 71)*3 PWS basis functions are
shown. From Fig. 8 it is seen that the convergence of the S
parameters is dependent of the number of PWS basis functions
used for the computations.

This dependence is due to the slope of the current expansion
functions at the gaps being limited by the PWS functions used
for the expansion. Clearly, increasing the number of PWS
modes increases the possible slope of the current at the gaps,
resulting in a better approximation to the true current.

The computations are shown together with measurements
in Fig. 9. The |S11| and |S21| parameters have been measured
using a HP8510 network analyzer from which the power lost
to surface waves, radiation and losses in the dielectric and
conductors are computed. We observe a 0.85% deviation of
the computed resonance frequency and a maximum deviation
of 0.6 dB of the |S1:| and |S21| parameters at resonance.

To obtain improved numerical results without increasing the
number of basis functions, it is necessary to use a new type
of basis function in proximity to the gaps which allows for
the true slope of the current at the gap edge. Investigations of
this type are underway.

V. CONCLUSION

A full-wave analysis has been presented for the problem of
microstrip gap discontinuities. The S1; and So; parameters of
the two gap microstrip filter have been computed numerically
and compared with measurements. The agreement is excellent.
Plots of the current distribution and the parameters have been
presented. The spectral integral has been computed using a
new integration algorithm which is both fast and accurate.
The method is efficient in terms of the number of integration
points needed for convergence. The basis and test functions are
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Fig. 9. Measured and computed amplitude of the S11 and S21 parameters.
(a) Amplitude plot of the measured and computed S-parameters and power
loss. (b) Measured and computed S-parameters in Smith chart. Input param-
eters: Substrate: RT/duroid 5870, d = 0.7874 mm, ¢, = 2.33 Dimension of
the filter: W = 2.30 mm, ¢ = 0.3 mm, L = 10 mm. Frequency sweep:
9.2 GHz to 10.6 GHz.

divided into a k. and a k,-dependent part which are calculated
once per k,(k,) value. The Green’s functions are calculated
once per (k, k,) value. Using this procedure, the S1; and Sy,
parameters of the two gap microstrip filter have been computed
using 641 basis functions.
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